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For obtaining the equations of motion of complicated gyroscopfc devices, 
prerogative is given to the second method of Lagrange. While giving credit 
to this method for leading us seemingly automatically to our goal, we 
cannot fail to notice its extremely cumbersome nature, obscuring some- 
times even the mechanical meaning of the equations obtained. 

At the same time the equations of motion of a complicated gyroscopic 
device can be obtained in a relatively simple way by a successive appli- 
cation of the theorem of kinetic moment (i.e. the theorem of qsantitos 

MfUS). [principle of angular momentum 1, to the corresponding mechanical 
system as a whole and to its separate parts. The description of an appro- 
priate method for the case of a particular system of regulated stabilfza- 
tion constitutes the basic contents of the present paper. 

1. The motion of gyroscopic systems to be stabilized. after a certain 
transient process, reduces itself. as a rule, to a slow change of orienta- 
tion of the spin axed of the gyroscopes with respect to the fixed stars. 
Such a motion is usually called precession. 

In the investigation of the precessional motion. the kinetic moments 
of the elements of suspension of a gyroscopic system and of the inner 
gfmbals of its gyroscopes, as well as the equatorial components of the 
kinetic moments of the rotors themselves and the kinetic moments of the 
motors need not be taken into consideration. The polar components 
(directed along the spin axis of the.corresponding gyroscope) can be con- 
sidered as being equal to the product of the axial moment of inertia of 
the rotor of the gyroscope and the angular velocity of the rotor with 
respect to its inner gimbal. 

The above-mentioned assumptions lead us to the so-called precessional 
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or elementary theory of gyroscopic phenomena. Under these assumptions 
the corresponding differential equations can be considerably simplified. 
In particular, their order can be reduced. At the same time the accuracy 
of the results obtained, investigating precessional motions, turns out 
to be completely satisfactory. except in special cases when the influence 
of inertia of the gimbals of a Cardan suspension must be taken into 
account. 

Investigation of the transient processes in gyroscopfc systems is 
possible only if the kinetic moments of all the Darts of the device are 
taken into account. The equations of the precessional theory for this 
purpose are of no use. 

2. Using the theorem of kinetic moment for obtaining the differential 
equations of motion of a gyroscopic device, one must have complete in- 
formation about the structure of the mechanical system in as much as the 
derivative of the kinetic moment vector of the system is the object to 
be investigated. 

In this connection the kinetic moment and its derivative must be re- 
ferred with respect to some well defined coordinate system prl*(* which 
is in a state of translators motion, In what follows such a system will 
be called a coordinate system of support. Indeed with respect to such a 
system one must calculate the inertia forces of the constrained motion 
acting on the mechanical system under consideration. In view of the 
translatory nature of the motion of the above mentioned coordinate system 
of support, the inertia forces of the constrained motion reduce them- 
selves to a resultant vector. The line of action of this vector nasses 
through the center of gravity of the mechanical system. Its direction is 
opposite to the direction of the acceleration of the origin of the GO- 

ordinate system of support with respect to the so-called absolute GoOrdi- 
nate system (fBLqn*[(l*. The origin of the latter is at the center of mass 
of our solar system with the axes directed towards the fixed stars. 

The magnitude of the resultant inertia force of the constrained motion 
is equal. of course. to the product of the mass of the considered mecha- 
nical system and the just mentioned acceleration. 

As a coordinate system of support can be taken, in general, any co- 
ordinate system [n<. not necessarily in a translatory state of motion. 
However, if the coordinate system of support [rl(’ is in a state of rota- 
tion with respect to the absolute coordinate system la*qa*ca*, then 
taking account of the inertia forces of the constrained motion becomes 
considerably more complicated. In addition. the Coriolis inertia forces 
appear which must be included among the external forces acting on the 
mechanical system under consideration. 
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When the coordinate system of support is in a state of translation, 
the Coriolis inertia forces, of course, are absent. 

3. Let a certain coordinate system &*<* be chosen as a system of 
support, and let G denote the kinetic moment of the mechanical system 
under consideration with respect to this coordinate system. The coordi- 
nate system pv*<’ moves trsnslatory, and therefore according to the 
theorem of kinetic moment the relations 

dCg. 
-= 

dt Mt.7 
hold. 

‘Ihe left-hand sides of 

de,,. de,. 
-= 
dt 

M 9.7 - = M,. 
dt 

these relations contain the derivatives, with 
respect to time, of the projections of the kinetic moment vector G along 
the axes p, q* and (*, while the right-hand sides contain the suns of 
the moments with respect to the same axes of all the external forces 
acting on .the mechanical system under consideration, including the inertia 
forces of the constrained motion. 

In applications, the relations (1) are not of much use because of the 

extremely cunbersome nature of the equations obtained. A considerable 

simplification of exposition is achieved by calculating the projections 

of the derivative of the kinetic momentum along the axes of a certain 

specially chosen moving coordinate system, the motion of which is in one 

or another way connected with the motion of the mechanical system under 

consideration. 

Let xyz be one such coordinate system called auxiliary or computa- 

tional. Denote by o the angular velocity of this new coordinate system 

with respect to the coordinate system of support &*[*, and assume that 

the origins of both systems coincide. 'Ihe projections of the derivative 

of the kinetic moment vector of the mechanical system under considera- 

tion with respect to the coordinate system of support &l*[* along the 

coordinate axes x,y and z have the well-known expressions 

where GX, G 
Y 

and Gz are the projections of the kinetic moment vector 
along the same axes, and or, 

q: velocity of the system xyz wit 
and oz are the components of the angular 
respect to the supporting system [*q*[* 

or, what is the same, with respect to the absolute coordinate system 

5* *r* ava a’ 

Due to the theorem of kinetic moment the expressions (21 are equal to 

the sums of the moments of the above-mentioned external forces of the 

mechanical system under consideration, together with the inertia forces, 
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depending on the constrained motion of the supporting coordinate system 
c%*c* (but by no means of the auxiliary system xyz which has a purely 
kinematic assignement; in this system the calculation of the derivative 
of the kinetic moment as it changes with respect to the coordinate 
system of support [%*[* may turn out to be much simpler than with res- 
pect to the system S?*(‘* itself). &noting the sums of these moments by 

M,, My and M,, we obtain the relations 

the set of which is equivalent to the set of relations (1). 

4. Among the external forces acting on mechanical systems are the un- 
known forces of reaction of the platform (usually moving) supporting 
them. In the majority of cases, gyroscopic systems are connected with 
the supporting platform by means of Cardan suspensions. Therefore, if 
the mechanical system under consideration consists of several elements 
of the given gyroscopic device, for example, of the whole system with- 
out the outer gimbal, or of a separate gyroscope with its inner gimbal 
and the rotor, then, as a rule, the outer connection of the system is a 
sinple pivot hinge. In a number of cases it can be assumed that, to a 
certain degree of approximation, the moment of friction in the pivot hinge 
does not depend on the normal reactions of its axle bearings. If the 
axle of the pivot hinge coincides with an axis of the coordinate system 
xyz, then one of the relations (31 changes into the equation of motion 
of a gyroscopic system which does not contain the unknown normal reaction 
forces of connection. 

In a more complicated case, when 
coincide with any of the coordinate 
motion of a gyroscopic system which 
assumes the form 

the axle of the pivot hinge does not 
axes x, y or 2, the equation of 
does not contain normal reactions 

Here cos XV, cos yv, and cos zv are cosines of the angles, made by 
the axis v of the pivot hinge with the x-, y- and z-axis, respectively, 
and M,, denotes the sum of the moments of the external forces, acting on 
the mechanical system under consideration, with respect to the axle of 
the pivot hinge. MV contains also the moment of friction of the axle of 
the pivot hinge, the moment of torsion transmitted to this axle by means 



On the theory of systems of gyroacopic stabilization 497 

of a special device, for example, an electric motor, and the moments of 
inertia forces of the constrained motion with respect to the axle v, 
depending on the translatory motion of the coordinate system of support 
&*(*. In a formal sense it is self-evident that 

M, = M, cos xv + M, cos yv + M, cos zv (5) 

If, however, the moment of friction of the axle of the pivot hinge 
depends on the normal reactions, then the establishment of the equation 
of motion, not containing these unknown reactions, becomes a more 
complicated problem and requires the use of all three relations of (3). 
let us observe that by. means of the Lagrangian method, (introducing un- 
determined multipliers), it would be rather difficult to establish the 
equations of motion of a gyroscopic system which takes into account the 
friction depending on the magnitudes of the normal reactions. 

S. Let us proceed now to the establishment of the equations of motion 
of a cooed gyroscopic device, namely, a system of spatial stabiliza- 
tion by means of three gyroscopes* (Fig. 1). 

l 

Fig. 1. 

Such a system was, in particular, realized by the Academy of Sciences 
of the Ukrsin. Soviet Socialist Republic in 1957 for the stabilization 
of frames of electrometers on moving supports (gyroplane). 
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&I a moving support, carrying this device, are fastened the bearings 

of the [ (x’)-axle of the Cardan suspension ring K of the platform II. 
‘Ihe platform n may turn with respect to the ring K about the y’(y)-axis, 

lying in the plane of the ring K and making a right-angle with the f(x’)- 

axis. 0n the platform II are placed two gyroscopes I and II, whose inner 

gimbals may rotate with respect to this platform about the zl- and z2- 

axis respectively, both at right-angles to the plane of the platform. 

lhe body T to be stabilized, together with the third gyroscope III, 

can also turn with respect to the platform II about an axis z(z) at right- 

angles to the plane of this platform. The y3-axis of the inner gimbal of 

the gyroscope III is parallel to the plane of the platform II. 

let us introduce right-hand coordinate systems 6~4, x’y’z’, xyz and 

?+, connected with the moving support, the ring K, the platform II and 

the body T to be stabilized, respectively. In what follows, the coordi- 

nate system ryz will be taken as the computational reference system. ‘Ihe 

[-axis of the coordinate system eq[ is the longitudinal axis of the 

moving object (moving support) and the q-axis its transverse axis. ‘lhe 

n’- and y’ -axis of the coordinate system x’y’z‘ lie in the plane of the 

ring K; the x’- axis coincides with the t-axis and is the axis of rotation 

for K with respect to the object (Fig.2). 

Fig. 2. Fig. 3. 

Denote by a the angle of rotation of the ring K with respect to the 

object . For a = 0, the corresponding axes of the two coordinate systems 

x’y’z’ and (q(’ coincide. For a > 0 the ring K is rotated with respect 

to the object in the counterclockwise sense, when the observation of the 
rotation is made from the side of the positive direction of the [-axis 

(or, what is the same, of the x’-axis). 

The coordinate system ryz is connected with the platform II (Fig.3). 

The y-axis of this system coincides with the y’-axis and is the axis of 

rotation of the platform II with respect to the ring K. Denote this angle 



On the theory of systems of gyroscopic stabilization 499 

of rotation by & The x-axis of the coordinate system xyz lies in the 

plane of the platform and the z-axis is at right-angles to this platform. 

For fi = 0, the planes of the platform II and of the ring fr’ and the corres- 

ponding axes of the coordinate systems xyz and x’y’z’ coincide. For p > 0, 

the platform IT is rotated in the counterclockwise sense with respect to 

the ring K, when the rotation is observed from the side of the positive 

direction of the y-axis (or, what is the same, the y’-axis). 

Finally, the body 7’ to be stabilized is connected with the coordinate 

system xyz, the z-axis of which coincides with the z-axis of the coordi- 

nate system xyz, connected with the platform II. Denote by Ii’/ the angle of 

rotation of these two systems with respect to each other (Fig.4). For 

$f= 0 

3 
Fig. 4. Fig. 5. 

the x- and I-axis, and also the y- and y-axis coincide with each other. 

For $> 0 the body T is rotated with respect to its initial position in 

a counterclockwise sense, when the rotation is observed from the side of 

the positive direction of the z(Z)-axis. 

Denote by y1 and yp, respectively, the angles of rotation of the inner 

gimbals of the gyroscopes I and II with respect to the platform II, For 

Yl 
= 0, the axis of proper rotation [spin I of the gyroscope I is parallel 

to the y-axis. Analogously for y2 = 0 the axis of spin of the gyroscope 

II is parallel to the x-axis. Let the positive direction for the angles 

y1 and y2 be the same as for the angle $1. 

Finally, denote by 6 the angle between the axis of spin of the gyro- 

scope III and the plane of the platform (Fig.6). The positive direction 

of the angle 6 will be selected in such a way that for 0 < 6 < r/2 the 

projection of the proper kinetic moment of the gyroscope III on the t(Y)- 

axis is positive. 

6. To secure prolonged stabilization of the body 7’ in the above 

described device, certain auxiliary elements besides the gyroscopes have 
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Fig. 6. 

to be anticipated. ‘Ihese elements must impose on the ring K, the platform 

II and the body Tmoments, the magnitudes and directions of which are de- 

termined by the angles yl, y2 and 8. Such elements may be, in particular, 

the electromotors E,, E, and E, (Fig.2,3 and 6). ‘lhe electromotor E, is 

mounted on the moving support. This motor develops about the [(x0)-axis 

a moment M,, applied at the Cardan ring K. The operation of the electro- 

motor is governed by an amplifier, whose voltage is produced by a trans- 

mitter D,, mounted on the axis of the inner gimbal of the gyroscope I. 

‘Ihe precession of the gyroscope I caused by the moment of the electro- 

motor E, is directed in the sense in which the angle y1 decreases. By 

the same token, for a sufficiently large moment of this electromotor, the 

danger is removed that the angle y1 could reach the value n/2 at which 

the stabilization breaks down. The latter case can happen when the device 

together with its moving support, is turned about the z-axis or by some 

other cause (action of weight, friction, inertial loads, and others). 

‘lhe electromotor E, is mounted on the ring K, by means of which the 

moment MY along the y”(y)-axis is applied to the platform lb ‘Ihe opera- 

tion of the electromotor E, is governed analogously to the preceding 

case by a transmitter D,, which indicates the angle of rotation y2 of the 

inner gimbal of the gyroscope 11. 

Finally, the electromotor E,, which is mounted on the platform Il, 

tends to rotate the body T about the z(z)-axis, developing a moment, 
whose magnitude and direction is determined by the angle 6 of declination 

of the inner gimbal of the gyroscope II1 (Fig. 6). 

change of orientation of the body T can arise only as a result of 

action of forces, applied to the gyroscopes I, II and IIT about their 

axes of inner gimbals. Such forces may be, in particular, the friction 

forces, which will change the given orientation of the body T. In order 
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to re-establish this orientation by means of electromagnets, and in a 
number of cases also by means of gravity forces, moments axe produced 
artificially about the axes of the inner gimbals of the gyroscopes I, II 
and III. * 

7. In establishing the equations describing the behaviour of this com- 
pound gyroscopic device, let us consider in succession the following six 
mechanical systems: (1) the whole device, i.e. the ring K, the platform 
lI, the body T and all three gyroscopes with all the additional elements 
Which are kinematically connected with them, (2) the same device, but 
without the ring K, (3) the body T with the gyroscope III, (4) the gyro- 
scope f (the rotor together with the inner gimbal), (5) the gyroscope II, 
and finally, (6) the gyroscope III. 

Each of the above mentioned systems is connected with others or with 
the moving support by means of a plane pivot hinge. ‘Ihe moment of the 
external forces acting on the corresponding system with respect to the 
axle of the pivot hinge must be considered as given. 

The angle of rotation of the hinge pivots with respect to their bear- 
ings is one of the generalized coordinates of the device. This fact also 
explains the choice of the above mentioned mechanical systems. 

For the first three mechanical systems take as the supporting coordi- 
nate system [3*<* a system with the origin at the geometric.center of 
support, i.e. the cornnon origin of the coordinate systems [q(, x’y’z’-, 
xyz and Z@, connected respectively with the moving support by the ring 
K, the platform II and the body T. ‘Ihe origins of the supporting coordinate 

* Similar moments may place the platform into the plane of the horizon. 
and produce for the gyroscope III such a precession that the body T 
does not rotate with respect to the Earth. For this purpose a properly 
selected load can be mounted on the inner gimbal of the gyroscope III. 

producing a moment about the axis y3 of this gimbal. In order to bring 
the platform into the position of the plane of the horizon, it is . 
sufficient, in particular, to attach to the inner gimbals of the gyro- 

scopes I and II some additional loads. When the platform is inclined, 
the additional loads will create moments about the axes of the inner 
gimbals, and by the same token produce precession of the gyroscopes I 

and II. BY a proper choice of the position of the loads on the inner 
gimbals, the platform will return back to its horizontal position. The 
described correcting system is called a mechanical one. It is simpler 
than the so-called electric correcting system, where the moments along 
the axes of the inner gimbals of the gyroscopes I and II are imposed 
by means of electromagnets. The magnitude and direction of the moments 
are determined by deviations of special pendulums situated on the 
platform K 
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systems for the last three mechanical systems, i.e. the separate gyro- 
scopes, will be taken at the points of intersection of the axes of the 
inner gimbals and rotors of the corresponding gyroscope. 

As a computational system assume in all cases one and the same coordi- 
nate system xyz which is fixed with the platform II. As above, denote the 
angular velocity of this system, or, what is the ssme, of the platform IT 
with respect to the supporting coordinate system 5+q*[* by o, and its 
projections on the x-, y- and z-axis by ox, o and wr. The magnitudes of 
the projections ox and w are determined by t e precession of the gyro- 

Y 
i 

scopes I and If and consequently must be small. Concerning the projection 
of the angular velocity of the platform II on the z(Z)-axis, i.e. the 
projection oz, we can say that its magnitude is determined by the motion 
of the support carrying the stabilizer under consideration, and conse- 
quently may be arbitrary. 

8. Denote by M’ the resultant moment of forces acting on the first 
mechanical system. * 

Further denote the kinetic moment [angular momentum I of the first 
mechanical system by G’i &responding to what has been said above, in 
the framework of the elementary theory of gyroscopes, G’ must be con- 
sidered as consisting only of the geometric sum of the proper kinetic 
moments of the gyroscopes I, 11 and III. 

‘Ihe projections of the kinetic moment G’ on the axes of the conputa- 
tional coordinate system xyz are given by the expressions 

G,’ = H (-sinr,+cosy, + cos6cos~), 

%I = H (cos rl + sin rz + cos 6 sin $), G,’ = N sin 6 (6) 

as may be easily seen from Fig.5 and Fig. 7. The proper kinetic moments 
H , H2 and I?? of the gyroscopes are considered to be equal to one and 
t e same constant quantity H. Relations of the type (3), obtained by rl 
application of the theorem of the kinetic moments to the first mechanical 
system, are of the form: 

l In the framework of the precessional theory of gyroscopes the resultant 
vector of the set of these forces is zero, and, consequently, this set 
reduces to a couple of forces with moment Ii’. 
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Fig. 7. 

By analogy to the relation (51, the relation (Fig.31 

iWXS cos p + M,’ sin p = iI!lti* (8) 

represents the sum of the moments of forces acting on the first mechanical 

system, i.e. on the whole stabilizer with respect to the x’f [ )-axis of 

suspension of the ring K. This sum does not contain the moments of the 

normal reaction forces of the axle bearings, In this way the equality 

E 
% + wyGZ’ - o,G;] cos p + [T + tixGy’ - o,G,‘.] sin p =M’,s (9) 

obtained by replacement of Hz, and M,, in the relation (8) by their ex- 
pressions (71, appears as the equation of motion of the gyrostabilizer, 

This equation does not contain the above mentioned moments of the unhnown 

normal reaction forces of the bearings of the axis of the ring K, located 

on the carrying support. * 

Using formulas (6) in the equality (9) and simplifying, we obtain the 

equation 

H cosp&(--sinr, + cosyp) i -c.ospcosZsin+ (0, + g)-. 

by 

l 

+cos ~~+cos 6 eos $11 + (0, sin j3 - w, cos pj (~0s rl + sin y2j + (101 

+w,sinp cosS sin+ =M:. 
1 

In addition to the moment of friction forces and the moment developed 
the electromotor E,, the moment MCZ* contains the moments of the 

Here and in what follows it is assumed that the moments of friction 
in all the axles of suspension do not depend on the magnitude of the 
normal reaction forces. 
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attraction forces of the Earth on the parts of the whole device and the 

moments of the inertia forces of the constrained motion, of the support- 

ing coordinate system c*q*<* with its origin at the geometric center of 

suspension. 

9. Equation (10) is one of the six differential equations describing 

the motion of a gyroscopic stabilizer. In order to obtain the next equa- 

tion, consider the mechanical system, consisting, as the preceding one, 

of all the parts of the stabilizer, except the ring K. Since the kinetic 

moment of the ring K in the elementary theory of gyroscopes is not taken 

into account, the resultant kinetic moment G of this new system must be 

considered equal to the kinetic moment G' of the preceding system, i.e. 

G, = G,', G, = Gv’, G, = G,’ (11) 
where GX, G and Gz are the projections of the kinetic moment of the new 

system on t e x-, y- and z-axis respectively, and G'%, G'y and G'z are X 

determined by formulas (6). 

'lhe reaction forces of connection of the platform II with the ring K 
appear in this system as external forces, and therefore must be taken 

into account in relations which follow from the kinetic moment theorem. 

These relations have the form of equalities (3). 'Ihe normal components 

of the reaction forces are absent only in the middle equation of the set 

(31, because the y(y')-axis is at the same time also the axis of the 

platform n, the bearings of this axis are rigidly connected with the 

ring K. Making use of the equalities (11) and the formulas (6) we obtain 
the equation 

H [A (~0s 7l+ sin y2) - sin 8 sin $ $ + (0;. + 2) cos 6 cos + + W, (- sin 7, + 

+ cos7,) - oXsin 6 1 = Ail, (12) 
'Ihe right-hand side of this equation, i.e. the moment MS! contains the 

moment of friction of the axis of the platform on its bearings, the 

reduced moment of the electromotor E,, the moment of the gravitation 

forces and the inertia forces of the constrained motion of all the parts 

of the stabilizer, except the outer ring. 

10. Consider now the third mechanical system, consisting of the body 
T with the gyroscope III (Fig.4). Its kinetic moment consists of the 
proper kinetic moment G of_the gyroscope III. Consequently, (Fig.71, the 

projections of the vector G on the axes of the computational coordinate 

system xyz are given by the formulas 

G, = Hcos 6 cm3 t), ~,=HcosS sin+, 2,~ If sin6 (13) 
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Of the three equations of the type (3) only the third must be used in 

the present case because the remaining equations contain the unknown 

normal reaction forces of the bearings on the axis of the body 7' to be 

stabilized. These forces are external with respect to the partial 

mechanical system under consideration. In this way, taking into account 

the formulas (13), we arrive at the equation 

Here & is the moment about the z(Z)-axis of all the external forces 

acting on the third mechanical system, i.e. on the body I', the inner 

gimbal and the rotor of the gyroscope X11, including the friction forces, 

the moment imposed by the electromotor E3, and also the moments of the 

inertia forces and gravitation forces. As before, the inertia forces are 

defined as the inertia forces of the constrained motion, implied by the 

translatory motion of the supporting coordinate system (*q*r* with the 

origin at the geometric center of suspension of the stabilizer. 

11. Considering the next three mechanical systems, i.e. the gyroscopes 
I, 11 and I.U, the corresponding coordinate systems of support cl*ql*<l*, 

4;%J2* and E 
; 
$Y', must be chosen in such a way that their origins 

coincide with t e points of intersection of the axes of the inner gimbal 

and the rotor of the corresponding gyroscope. Ihey have different accele- 

rations with respect to the absolute coordinate system ca3,*[,' .?his 

difference is implied by the angular velocity o of the platform II, and 

for the system of support [,*q,*C3* also by the relative angular velocity 

dt,lr/dt of the body T with respect to the platform II. Because of the small 
dimensions of the gyroscopic stabilizer and the comparatively small 

magnitudes of wz, 6.~~' wz and d$/dt, the above mentioned difference of 

accelerations between the various coordinate systems of support and the 

system of support f*q*<* is very small and in practice, in the majority 

of cases, it can be neglected. 

Applying the theorem of kinetic moment to the mechanical system con- 

sisting of the rotor and the inner gimbal of the gyroscope I, we obtain 
the equality 

&G; +o,G'-w,G;= Ml lJ 2, (15) 

which is analogous to the third of the relations of the type (3) and which 

does not contain the unknown normal reaction forces of the axis of the 

inner gimbal. In the last equality (Fig.5) 

Gfe =-Hsinr,, G:=Hcosr,, Gf = 0 ($6) 

are the projections of the kinetic moment G' of this system, or, what is 
the same, of the proper kinetic mcment of the gyroscope I on the axes of 

the axes of the computational coordinate system xyz. The quantity Mlzi 
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denotes the sum of the moments with respect to the zI-axis of the inner 

gimbal of all forces acting on the gimbal and the rotor of this gyroscope 

To these forces belong, in particular, the friction forces of the axes of 
suspension of the inner gimbal, the gravitation forces, the inerti& force 

of the constrained motion, the elastic forces of the electric wirings and 

the reaction forces of the servo-mechanisms D, and D,. 

Using the formulas (166)‘ the equality (15) assomes the form 

H (wX cos rl + wy sin rl) = Mf, (17) 

‘Ihis is the fourth equation of motion for the gyroscopic stabilizer. 

Carrying out, in a similar way, calculations with respect to the 

gyroscope II, we obtain the fifth equation, namely 

H (ox sin y2 - wy cos rz) = Mif (18) 

‘Ihe moment Mi: has the same meaning as the moment MiI, being the sum 

of moments of forces acting on the inner gimbal and the rotor of the 

gyroscope II with respect to the axis z2 of its inner gimbal. 

It is essential that the equations (17) and (18) do not contain the 

unknown normal reaction forces of the bearings on the axes of the inner 

gimbals of the gyroscopes I and 11. 

12. Finally, consider the sixth mechanical system, consisting of the 

inner gimbal and the rotor of the gyroscope III (Fig. 6). In this case 

the relations (31, after replacing the quantities G,, Gy and G,, respect- 
ively, by the projections of the kinetic moment of the gyroscope III, 

namely 

G;Jf -7 11 cos 6 cost), GF1 = ff cos 6 sin 9, (2:“’ = H sin 6 (1% 

assume the form 

H 
I 
i (cos s cos $1 + q, sin 6 - w, cos 6 sin +I= il/lf” 

Here MiII, I$” and Mirr are the sums of the moments of forces acting 

on the inner gimbal and the rotor of the gyroscope III’, calculated with 

respect to the axes x,y and z (or, with respect to the axes, respectively 

parallel to the axes x,y and z; .see footnote in Section 6. 

Among these forces are also the unknown normal reaction forces of the 

bearings on the axis of the inner gimbal of the gyroscope III, located 

in the body T. )kiwever, if we consider the expression 
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- MfclI sin t) + Mill cos (J = M !I (21) 

then it is not difficult to see that it gives the sum of the moments of 
forces acting on the gyroscope III and calculated with respect to the 
axis 7 of its inner gimbal, and that the above mentioned normal reaction 
forces are not present in this expression. Substituting in this 
expression for ,!!:I’ and M”’ 
(20), 

Y 
their expressions according to the equalities 

we obtain after some calculations the equation 

H ‘w, + %XX6 
[’ \ dt i 

- (0, cos + f wy sin $) sin 6 
I 

= My1 (22) 

Let us note that, in deriving the equations (17), (18) and (22)) 
instead of the computational coordinate system xyz, also other comput- 
ational systems can be used, in particular the system I@, in deriving 
the equation (22). 

Equation (22) completes the set of six differential equations describ- 
ing the behavior of a gyroscopic stabilizer and its separate parts among 
each other and with respect to directions connected with the fixed stars. 

13. For the convenience of the subsequent conclusions let us collect 
together the equations (lo), (12), (14), (17), (18), and (22). We then 
obtain the following set of equations 

H {COS p [-& -sin7,+cos7,) -cos6sinrl,(o, + g) + q, sin 6] - 

- (0s B sin 6 cos $.-- sin p cos 6) g + sin $a, cos 6 sin 4 - f.0” (- sinr, + 

i- cos 72 -I- cos 6 cos +)] + (We sin p - oZ cos /3) (cos yl + sin 7z)} = M,’ 

H [$ (,os rl + sin TV) - sin 6 sin + $ + (We + 2) cos 6 cos II, + w, (- sin rI+ 

+ c3s r2 
> 

- w,sin6 =M, 1 
H cosB~to.eos8sinIj,--w,cosBcosJ/) = aZ 

( 

H (a, cos rl + wu sin y,) = Mf,, H (a, sin r2 - ~~~0~72) = Mtt 

H [(az + 2) cos 6 - (0, cos J, $ wy sin $I) sin 6 
1 

= M!$ 
II 

describing the motion of a gyroscopic stabilizer with three axes. 

(23) 

14. Consider some important consequences of these equations. Let 

&II z Mff = MzI = 0 
6 II (24) 
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i.e. the projections of the moments on the axes of the inner gimbals of 

the gyroscopes are zero. In practice this can be achieved to saae extent 

as a result of a careful balancing of the gyroscopes so that the center 

of gravity of the system consisting of the inner gimbal and the rotor 

lies as close as possible to the axis of the corresponding inner gimbal, 

and the friction forces in the bearings and the resistance of the wirings 

are reduced to a minis. 

According to the fourth and fifth equation of (23) we obtain in this 

case the equalities 

w,cosyl + o,siny, = 0, oXsin~,--tiw,cosyz=O (25) 

from which it follows that 

in all cases except 
w, = WV = 0 (26) 

Yz = Yl -c- ‘12% (27) 

when the axes of spin of the gyroscopes I and II are parallel. Thus, if 

as a result of action of the electromotors E 

remain between certain limits, for example, b 

and E, the angles y1 and y2 

etween + 15’ and 20°, then 

the plane of the platform ll under conditions (24) will turn out to be 

stabilized with respect to the fixed stars. 

‘Ihe sixth equation of the system (231, taking into account the condi- 

tions (24) and equalities (25) reduces to 

provided, of course, 

‘lhe left-hand side of equality (28) is the projection on the t(f)-axis 

of the angular velocity of the body T with respect to the coordinate 

system of support e*r)*c*. ‘The projections of this angular velocity on the 

x- and y-axis coincide with the corresponding projections of the angular 

velocity of the platform II, and because of the equalities (261, are equal 

to zero. Thus, if the projections of the moments on the axes of the inner 

gimbals of all three gyroscopes are zero, i.e. if the conditions (24) are 

satisfied, the body T turns out to be stabilized with respect to direction 

to fixed stars. 

The first three equations (231, taking into account the equalities 

(26) and (28) assume the form 

d - H cos p tlti ( sin y1 - cos -I.~) + (sin 6 cos + - cos 6 tg /3)2 + W, (cosyr + 
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lhder the assumption that no moments are applied to the ring K, the 
platform ll and the body T, and that the friction is absent, i.e. 

M’ =, = J&f, = &, = 0 (311 

and that the motion of the carrying basis is such that 

wz = 0 (32) 

the equations (30) are satisfied by arbitrary constant values of the 
angles y1 y2 and 6. 

Iet now the electromotors E,, E, and E? be directed in such a way 
that the moments, imposed by them on the axes of the ring K, the plat- 
form II and the body T, be proportional to the angles of rotation of the 
inner gimbals of the corresponding gyroscopes, and let the friction in 
the axes of suspension as before be absent. In such a case we can assume 
that 

M’,, = ky,, M, = - kyz, @, = -- k8 (33) 

where k is a coefficient of proportionality. 

Equations (30), under condition (321, have a solution 

Yl = 0, yz=o, 6=0 (34) 

It is not difficult to convince oneself, remaining in the framework 
of the precessional theory of the gyroscopic stabilizer under considera- 
tion, that the equilibrium position determined by this solution is stable. 
In fact, if the angles yr, y2 and 6 are small, then up to the first order 
terms with respect to these quantities and their derivatives, the equa- 
tions (301, taking into account the equalities (32) and (331, reduce to 

the form 

From these equations it is evident that the magnitudes of the angles 
y , y2 and 8 will tend to zero independently from the law of change of 
t fi e angle /3 between the planes of the ring K and the platform II. ‘Ihe 
change of the latter is determined by the motion of the basis. We must 
assume, of course, that @ < 90c.* 

1 In some cases, with the motors switched on. the transient processes 

m~nt~oaed in Section 1 do not die out but lead to self-oscillations 

of the gyroscopic platform (first of all about the axis x’- of the 

Footnote continued overleaf:- 
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In a more general case the right-hand sides of the equations (30), 

i.e. the moments hVx#, M,, and gZ contain, besides the moments of the 

electromotors, the momen”ts of friction in the suspension axes x’( E ) , 

y(y’) and T(z) of the ring K, the platform II and the body T respectively. 

‘Ike directions of these axes are determined by the relative angular velo- 

cities da/dt, d(l/dt and d$/dt. In addition, in the case of sn 

insufficient balancing of a mechanical system and its separate parts, 

M’ %I, MY and ML will contain also the moments of inertia forces of the 

constrazned motion and of the gravity forces. 

thder the assumption that the angles y,; y2 and 6 are small, the 

equations (30) reduce to the form 

-4cos~H[~-tg~$,s+COz(1 +Q)] =M,,” +M(y,) 

H [G + Q, (1 - rl)] = 1&“-~ (~2) (36) 

H!?_=M. 
dt L - ii% (a) 

where hPg*, y and q are the above-mentioned suns of the moments of the 

friction forces, inertia forces and gravity forces, acting on the mecha- 

nical systems consisting of (a) the ring K, platform II and the body 7’ 

faith the gyroscopes I, II and 111); (b) the platform n and the body T 

(also with the gyroscopes I, If and 111) and (c) only of the body T (with 

the gyroscope IjrI), respectively. The quantities My I), M(y, ) and M(6 ) 
are the moments, imposed on these mechanical systems by the electromotors 

E,, E, and E,, respectively. 

I 
Mrnaz 

c 

Y 

t 
Mmax 

Y 

Fig. 8. Fig. 9. 

suspension ring K). Investigating these oscillations, as well as the 

means of their suppression, one must take into account the moments of 

inertia of the parts of a gyroscopic device, and the transient pro- 

cesses in electric circuits of the motor and in the supplementary 

circuits of feedback of the amplifiers. Because of the high frequency 

of the self-oscillations, the influence of the motion of the basis on 

the oscillations, as a rule. turns out to be inessential. A discus- 

sion of self-oscillations of the described gyroscopic stabilizer is a 

subject of a aepsrate investigation. 
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The moment, developed by each of the electromotors, cannot exceed a 
certain limit determined by the parameters of the motors and the trans- 
mission connecting its shaft with the corresponding axle. Fig. 3 illust- 
rates a frequently encountered form of a diagram showing the dependence 
of the moment M developed by the motor (in a short circuit, i.e. for a 
completely checked motor) and the angle of deviation y of the inner 
gimbal of a gyroscope from its mean position. In Fig. 9 another form of 
this dependence, the so-called step-form, is illustrated. For the 
successful working of a stabilizer it is absolutely necessary that the 
maximum moment Mmax for arbitrary circumstances of motion of the objects 
and the gyroscopic stabilizer exceeds the corresponding *destabilizinga 
moment tiZ,*, My* or MIZ*. In exactly the same way this moment must exceed 
the product 

(o&ax H (37) 

where ( Q) z)max is the maximum value of the angular velocity of the 
rotating platform fl about the z-axis, this rotation being implied by the 
motion of the object with circulation. If this is not the case, when 
turning the platform, the axes of spin of the gyroscopes I and II will 
fall behind this platform and the angles y1 and y2 will begin to increase 
without bound. 

Conditions were established above under which the body Twill be 
stabilized with respect to directions to the fixed stars. These condi- 
tions reduce to the requirement that the sum of moments of forces acting 
on each of the mechanical systems, consisting of the inner gimbal and the 
rotor, and calculated with respect to the axis of the corresponding 
gimbal, must be equal to zero. This can be realized only if the moments 
of friction in the bearings of the axis of the inner gimbal are complet- 
ely removed and if the center of gravity of the system, consisting of 
the inner gimbal and the rotor, lies on the axis of this gimbal. 

In a number of cases it is required that the body T is stabilized with 
respect to a coordinate system connected with the vertical of the location 
and the cardinal points of a specified geographical coordinate system. 
The axes of such a coordinate system, usually, are directed to the East, 
North and the Zenith respectively. In the case of a fixed basis the 
angular velocity of the body T must be equal to the angular velocity of 
the Earth. If, however, the basis is displaced, then the angular velo- 
city of the body T must be equal to the sum of the angular velocity of 
the Earth and the angular velocity of the relative motion of the geo- 
graphical coordinate system with respect to the Earth. 

To the axes of the inner gimbals of the gyroscopes I, II and III, in 
conformity with the last three equations of (23), must be applied the 
corresponding moments Y,iI, YzzlI and M III, 

Y 
causing the necessary 
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precession of the gyroscopes and, as a consequence of this. the necessary 

angular velocity of the body T. One of the methods for constructing the 

moments Yzl I and Mz,‘* was described in the footnote of Section 6. The 

technical realization of this problem, in case the basis is displaced, 

is faced with great difficulties. 

BIBLIOGRAPHY 

1. Krylov, A.N. and Krutkov, 1u.A.. Obshchaia teoriia giroskopov i neko- 

torykh tekhnicheskikh ego primenenii (General Theory of Gyroscopes 

and Sore of Its Technical Applications). Leningrad, 1932. 

2. Grammel. R., Giroskop, ego teoriia i prircneniia (The Gyroscope, its 

Theory and Applications). IL, MOSCOW, 1952. 

3. Ishlinskii, A. Iu., Mekhanika special’nykh giroskopicheskikh sistem 

(Mechanics of special gyroscopic systems). Akad. Nauk Ukr. SSR, 

Kiev, 1952. 

Translated by E.L. 


